Building Robust Ensembles via Margin Boosting

Dinghuai Zhang, Hongyang Zhang, Aaron Courville, Yoshua Bengio, Pradeep Ravikumar, Arun Sai Suggala

Motivation

Boosting algorithms aim to iteratively learn weak classifiers and combine them as an ensemble to form a strong classifier.

Can we combine multiple base classifiers into a strong classifier that is robust to adversarial attacks?

Margin-boosting framework

We propose a margin-boosting framework (Freund et al., 1996) for robustness

This is a two-player zero-sum game.

Optimality of margin boosting (informal)

We show that the following two arguments are equivalent:

- (weak learning condition) for any combination of data points, there exists a base classifier in *H* that performs slight better than random guessing.

$$\mathbb{E}_{(x,y,y',\delta)\sim P'}[1\{h(x+\delta)=y\}]\geq \mathbb{E}_{(x,y,y',\delta)\sim P'}[1\{h(x+\delta)=y'\}]+ au$$

- the optimal solution of the aforementioned minimax game achieves perfect adversarial robustness.

A Robust Boosting Algorithm

Algorithm 1 MRBOOST

- 1: Input: training data S, boosting iterations T, learning rate η .
- 2: Let P_1 be the uniform distribution over $S_{aug.-}$
- 3: for t = 1 ... T do
- 4: Compute $h_t \in \mathcal{H}$ as the minimizer of:

$$\min_{\boldsymbol{\lambda} \in \mathcal{H}} \mathbb{E}_{(\mathbf{x}, y, y', \delta) \sim P_t}[\mathrm{mg}_{\mathrm{L}}\left(h(\mathbf{x} + \delta), y, y'\right)].$$

intractable 0-1 margin loss, need differentiable surrogate

online learning framework

5: Compute probability distribution P_{t+1} , supported on S_{aug} , as:

$$P_{t+1}(\mathbf{x}, y, y', \delta) \propto \exp\left(\eta \sum_{j=1}^{t} \mathrm{mg}_{\mathrm{L}}\left(h_{j}(\mathbf{x}+\delta), y, y'\right)\right), \longrightarrow \text{ need an efficient sampler}$$

6: end for

7: **Output:** return the classifier $h_{Q(T)}^{\text{am}}(\mathbf{x})$, where Q(T) is the uniform distribution over $\{h_t\}_{t=1...T}$.

resulting "argmax" classifier from the ensemble Q(T)

 $\ast \{ (\mathbf{x}, y, y', \delta) : (\mathbf{x}, y) \in S, y' \in \mathcal{Y} \setminus \{y\}, \delta \in \mathcal{B}(\epsilon) \}$

Practical MRBoost.NN algorithm

Experiment results

Single classifier case: the proposed MCE loss consistently increase the robustness of many previous algorithms (more details in the paper)

Table 2. Experiments with wideResNet-54-10 on ChrAR10.											
Метнор	CLEAN	FGSM	CW	PGD-20	PGD-100	AUTOATTACK					
AT AT + MCE	86.31 85.56	$\begin{array}{c} 64.01 \\ 64.20 \end{array}$	$\begin{array}{c} 53.28\\ 53.46\end{array}$	54.12 55.40	53.75 55.14	50.13 52.07					
TRADES TRADES + MCE	$\begin{vmatrix} 83.25\\84.76\end{vmatrix}$	62.48 64 .63	$\begin{array}{c} 49.51\\ 49.49\end{array}$	54.97 56.23	54.80 55.99	$51.92 \\ 52.40$					
MART MART + MCE	83.12 83.65	63.68 64.3	52.57 54 . 24	55.75 56.31	55.49 56.15	50.85 52.81					
GAIR GAIR + MCE	83.91 84.55	65.79 67.96	49.44 49.94	58.99 61 . 79	58.97 61.93	$\begin{array}{c} 44.04\\ 44.22\end{array}$					
AWP AWP + MCE	85.32 84.97	65.89 66.53	55.40 56.23	57.37 58.40	57.08 58.12	53.67 54.69					

Table 2. Experiments with WideResNet-34-10 on CIFAR10.

Experiment results

Multiple classifiers case: our proposed MRBoost.NN turns out to be a better robust boosting method than the baselines.

Method	ITERATION 1		ITERATION 2		ITERATION 3		ITERATION 4		ITERATION 5	
	CLEAN	Adv	CLEAN	Adv	CLEAN	Adv	CLEAN	Adv	CLEAN	Adv
WIDER MODEL	82.61	51.73								
DEEPER MODEL	82.67	52.32	—							
ROBBOOST + RNDINIT	82.00	51.05	84.58	49.95	83.87	51.66	82.56	52.72	81.44	52.92
ROBBOOST + PERINIT	82.18	50.97	85.60	50.13	84.59	51.77	84.21	52.79	82.78	53.28
MRBOOST.NN + RNDINIT	81.04	51.83	84.61	52.68	84.93	53.51	85.01	53.95	85.35	54.13
MRBOOST.NN + PERINIT	81.34	51.92	84.97	52.97	85.28	53.62	85.99	54.26	86.16	54.42

Table 3. Boosting experiments with ResNet-18 being the base classifier.

Thank you very much!